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A new, slim-profiled, low-blockage quadripod structure was designed to support the
7. 7-m-diameter subreflector for the 70-m antenna. Detailed analyses of quadripod struc-
tural stability (in frequency and buckling) are presented. The results indicate that the new
quadripod design has an adequate safety margin for buckling, and its lowest natural
Jfrequency is above the control system bandwidth. The analytical design frequencies were
confirmed by actual field measurements made in Spain in February 1986.

I. Introduction

The upgrade of the three NASA/JPL 64-m diameter anten-
nas will provide a needed increase in Earth-based space com-
munication capability at all three Deep Space Communications
Complexes: Goldstone, California (DSS 14); Canberra, Aus-
tralia (DSS 43); and Madrid, Spain (DSS 63). In addition to
the increase of the antenna aperture area from 64 m to 70 m,
a number of significant improvements in the quadripod, sur-
face panels, subreflector positioner, and microwave aspects
are included in the design. The upgrade objective is to increase
the radio-frequency (RF) gain/noise temperature (G/T) by
about 1.9 dB at X-band (8.45 GHz).

As part of the upgrade effort, a new, high-precision 7.7-m
(25.4-ft)-diameter subreflector and positioning mechanism
are needed. Consequently, an. entirely new quadripod struc-
ture is required to support the subreflector. The new quadri-
pod design particularly emphasizes reduced RF blockage,
which is achieved by means of a narrow cross-sectional profile
of the legs. The profile adopted provides about 0.32 dB of

gain improvement in comparison with the existing 64-meter
design (Ref. 1). This report addresses the stability analyses
performed on the new quadripod design to ensure that it has
an adequate safety margin for buckling and that the mini-
mum natural frequency is compatible with control system
requirements.

After construction, full-scale vibration measurements were
performed at the fabricator’s plant on the completed and
assembled structure with dummy weights to simulate the
subreflector and other equipment loads.

Il. Design

The quadripod assembly is a tabular space-frame steel
structure with four trapezoidally shaped legs connected to
another large space frame at the apex, as shown in Figs. | and
2. The four legs are supported at the corner points of the
rectangular truss system of the main reflector structure as
shown in Fig. 2. The final slim profile leg cross-section enve-
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lope selected is shown in Fig. 3. Also, the quadripod will be

used occasionally for hoisting the cassegrain feed cones, the

subreflector, or other heavy equipment which may be removed
and reinstalled.

The finite element model of the 70-m quadripod truss
structure is a pin-joined frame (3 translational degrees of
freedom per node) comprising 156 nodes, 445 axial bars, and
28 membrane plates. The JPL/IDEAS (Iterative Design of
Antenna Structures) computer program was used for analysis
and design (Ref. 2). The program employs the optimality
criterion to minimize the structural weight (objective function)
with a constraint placed on the lowest natural frequency. A
subsequent analysis of the 70-m model, accounting for bend-
ing and torsional stiffness at the joints (6 degrees of freedom
per node) using NASTRAN (Ref. 3), showed only a small
increase in the torsional natural frequency (Ref. 1). Outrigger
braces (Fig. 2) were added thereafter to increase the lowest
natural frequency.

Due to the slimness of the quadripod legs, the following
requirements had to be considered:

(1) Dynamic stability. The original 64-m antenna quadri-
pod, with a minimum natural frequency of 1.22 Hz,
presented no control system stability problems. There-
fore, it was recommended that the minimum natural
frequency of the new 70-m antenna quadripod must be
1.22 Hz. There are several distinct types of vibration
modes characteristic of quadripod structures. Torsional
modes can be excited at near-zenith antenna elevation
by the azimuth drive. Lateral vibration cantilever
modes can be excited by the azimuth drive at low ele-
vation angles, and cantilever pitch modes can be
excited by the elevation drive at any elevation angle,
as shown in Fig. 4.

The torsional mode had the lowest frequency, so
this frequency was selected as the primary design
constraint. It was also found that this frequency could
be significantly increased by adding outrigger braces
near the quadripod base. These braces have an impor-
tant stiffening effect and provide an insignificant
increase in blockage. However, the braces are attached
to an elastic antenna structure, and the compliance of
this structure could reduce the outrigger contribution
to the stiffness of the quadripod. Therefore, the conse-
quences of partially effective outrigger braces on
natural frequency were also studied.

(2) Static buckling stability. The occasional use of the
quadripod as a derrick required a check on the possi-
bility of buckling instability. A factor of safety of at
least 1.5 was recommended. The smallest eigenvalue

34

found from a structural buckling analysis is equivalent
to this factor of safety. Since the IDEAS program that
was used for design and natural frequency analyses
does not perform buckling analysis, the new quadripod
design was optimized for the frequency requirement
using IDEAS and then analyzed for buckling using
NASTRAN (NASA Structural Analysis Program).
NASTRAN was used to determine the buckling loads
of the natural frequency-constrained quadripod design.
Two versions of the NASTRAN program were used
because of possible different finite element formula-
tions: the NASTRAN-COSMIC (NASA’s Computer
Software Management and /nformation Center) (Ref. 4)
and the proprietary NASTRAN-MSC version (MacNeal-
Schwendler Corporation) (Ref. 3). The two versions
were used both for the buckling and natural frequency
analyses, and the results obtained were compared.

lll. Natural Frequency Analysis
and Results

For natural frequency and mode shape analysis, the IDEAS
program uses the Simultaneous Iteration method (Ref. 5),
which is an iterative extension of Guyan’s one-step solution.
The NASTRAN programs in this study used the conventional
Inverse Power Method.

Table 1 compares the first three natural frequencies of two
pinjoined quadripod models; one with outrigger braces and
the other without braces. All the values of Table 1 (except
mode 1 without outriggers) exceed the goal of 1.22 Hz
Despite their effect on frequency, the braces do not signifi-
cantly alter the characterization of the mode shapes of interest:
the lowest mode is torsional and the next lowest are lateral
and pitch cantilever modes. This table makes it evident that
the outriggers are effective and approximately double the
lowest frequency. Also included in Table 1 are the field
measurements made on the assembled quadripod (Ref. 6).

To study the consequences of varying degrees of outrigger
fixity caused by partially effective braces, the axial stiffness
of the outriggers was parameterized, and the resulting natural
frequencies were computed and plotted in Fig. 5. This approach
is equivalent to reducing the “stiffness” of the support points.
There is a relatively small change in frequency as long as the
stiffness is at least 50% of the maximum. This fortuitous
condition results from the requirement that the quadripod
supports the hoisting loads.

IV. Results of Buckling Analysis

The Rigid Format No. 5 of the NASTRAN program was
used to perform the buckling analysis. The results of the




buckling analysis for the quadripod pin-joined model are
presented in Table 2. Both the COSMIC and MSC versions of
the NASTRAN program were used and compared. Four
antenna configurations, each subject to the maximum loads
anticipated to be hoisted when employing the quadripod as
a derrick, in addition to the quadripod weight, were consid-
ered in the quadripod buckling analysis:

(1) Zenith look with outriggers.
(2) Zenith look without outriggers.
(3) Horizon look with outriggers.

(4) Horizon look without outriggers.

Table 2 shows that similar to effects on natural frequency
the outriggers tend to at least double the buckling load capa-
bility.

V. Finite Element Plate Stiffness
Representation

Comparisons of the COSMIC-NASTRAN and MSC-
NASTRAN results on the quadripod model in Table 1 show
that the plate element CQDMEM2 in the COSMIC version
gives a different stiffness matrix representation compared with
the CQUAD4 plate element in the MSC version, or with the
IDEAS plate element CQDMEM. The lowest natural frequency
of the quadripod, for instance, was found to be 1.54 Hz for
the COSMIC model, while the MSC and IDEAS models gave

1.30 Hz. Table 3 compares the quadripod natural frequency
results by the three computer programs: IDEAS, NASTRAN.
COSMIC, and NASTRAN-MSC.

A parametric study was conducted to readjust the moduli
of elasticity of the COSMIC CQDMEM?2 plate elements to
produce results similar to those of the MSC elements. Compar-
ison of the results of the stiffness parameterization study is
shown in Table 4 for the quadripod natural frequency analysis
and in Table 5 for the quadripod buckling analysis. The plate
element used in the NASTRAN-COSMIC employs the constant
stress formulation, while the elements used in the NASTRAN-
MSC or IDEAS permit a stress variation. As a result, the
COSMIC element generates a stiffer structure than the other
elements.

V1. Summary

A natural frequency and structural stability study was
conducted for the 70-m antenna quadripod. The quadripod
was found to be adequate in natural frequency and stable in
buckling when the outrigger braces were included. One com-
puter program used in the investigation was found to give an
over-estimate of the stiffness. In order to correct the exces-
sive stiffness, a parametric study was conducted to derive
empirical coefficients to adjust the plate stiffness for future
use of this program. The predicted values of natural frequency
were shown to be closely consistent with actual full-scale field
tests.
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Table 1. Comparison of natural frequencies for 70-m quadripod

Frequency, Hz \
With outrigger Without outrigger Predominant
Mode braces braces
mode shape
Analytical Field Analytical Field
measurement measurement
1 1.302 1.27 0.637 0.70 Torsion
2 1.967 1.76 1.293 1.36 Lateral cantilever
3 2.720 2.62 1.555 1.74 Pitch cantilever
Table 2. The quadripod buckling analysis resuits
NASTRAN NASTRAN
Case Antenna configuration COSMIC MSC
version version
1 Zenith look, with outriggers 22.81 12.27
2 Zenith look, without outriggers 9.23 (not run)
3 Horizon look, with outriggers 12.87 3.77
4 Horizon look, without outriggers 4.12 1.66

Table 3. Comparison of lowest natural frequencies of the
70-m quadripod with outrigger braces

Frequency, Hz

Computer program

Mode IDEAS MSC-NASTRAN COSMIC-NASTRAN

Plate element

CQDMEM CQUAD4 CQDMEM2
1 1.302 1.304 1.542
2 1.967 1.967 2.089
3 2.720 2.720 3.216




Table 4. Comparison of the plate element stiffness and the lowest quadripod

natural frequencies

Young’s modulus,

Shear modulus, Mode 1 Mode 2

Program Plate element N/m? N/m? min. freq., min. freq.,
(psi) (psi) Hz Hz
NASTRAN-MSC CQUAD4 20.0 x 10*° 8.3 x 10'° 1.304 2.720
(29.0 X 10%) (12.0 X 10%)
NASTRAN-COSMIC CQDMEM?2 14.5 x 10'° 6.0x 10'° 1312 2.737
(21.0 X 10% (8.7 x 10%)

Table 5. Comparison of the plate element stiffness and the smallest eigenvalues for the
quadripod buckling analysis

Young’s modulus, Shear modulus,
Program Plate element N/m? N/m? Amin
(psi)

(2) Zenith Look Antenna Configuration, with Outrigger Braces: .

NASTRAN-MSC CQUAD4 20.0 X 101;’ 8.3 x 10'° 12.27
(29.0 X 10%) (12.0 X 10%)

NASTRAN-COSMIC CQDMEM?2 10.7 x 10'° 4.4 x 100 12.30
(15.5 x 10% 6.4 x 10%

(b) Horizon Look Antenna Configuration, with Outrigger Braces:

NASTRAN-MSC CQUAD4 20.0 x 10*° 8.3 x 10'° 3.77
(29.0 x 10%) (12.0 x 10%)

NASTRAN-COSMIC CQDMEM?2 5.2% 10'° 2.2x 1010 3.97
(1.5 % 10%) (3.2% 10%
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Fig. 1. Antenna quadripod and reflector system
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Fig. 4. Quadripod vibration modes
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Appendix A
Differential Stiffness Matrices for Geometric Nonlinear Problems

For completeness of the report, the following material,
which is extracted from Ref. 3, is included to describe formu-
lation of the differential stiffness matrix that is used in the
buckling analysis. The differential stiffness approximation
uses terms up to quadratic in the strain-displacement relation-
ship. The linear elastic solution and the differential stiffness
solution are the first two iterations in the geometric non-
linear algorithm, which is an iterative technique that utilizes
a modified Newton~Raphson method.

The approach requires a “Displaced Element Coordinate
System” to be constructed for each element, which follows
and rotates with the element as the model deforms. In the
displaced element coordinate system, the distortions are small,
and linear elastic theory can be used. Element forces in the
displaced element coordinate system are computed by simply
premultiplying the displacements by the elastic (small motion)
stiffness matrix. The incremental stiffness matrix, when ex-
pressed in the displaced element coordinate system, is the sum
of the elastic and differential stiffness matrices.

The term “‘differential stiffness” applies to linear terms in
the equations of motion of an elastic body that arise from a
simultaneous consideration of large, nonlinear motions and the
applied loads.

The approach to the theory of differential stiffness is based
on Lagrange’s equations for the motion of a system with a
finite number of degrees of freedom. Consider a system with
a finite number of degrees of freedom, q,; with a set of springs
whose potential energy is V; and with aset of loads, P, applied
to displacements u,. The equations of motion for the system
may be written

oV _ _
a—q':-Qr, 7—1,2,3,...,I’l (A-l)
where the generalized force @, is given by
ou
oW a
= — = ~—P A2
0, = 5. Za: 5, Fa (A2)

W is the work done by the external forces. It is assumed in
the theory of differential stiffness that the potential energy of
differential stiffness is a quadratic function of the degrees of
freedom, i.e.,

!
V"'z_ Z: aiiqiqj (A'B)
t'l

but that the partial derivatives, 6ua/6qr, are not necessarily
constants.

The Lagrangian discrete element approach can be applied
to a general elastic body, if it be imagined that the body is
made up of infinitesimal cubes, each of which is joined to its
six neighbors by a universal joint at the midpoint of each face.
For a given static loading on the body, the stress distribution
is computed throughout the body, ignoring differential stiff-
ness effects in the process. This internal stress distribution is
taken as the equivalent loading, and is applied to each cube in
turn to determine the differential stiffness for the cube.

The work done by the static loads is computed for general
motion of the degrees of freedom using Eq. (A-2). The terms
in the differential stiffness matrix for the cube are then com-
puted from

20,

2 w
K}‘S - aqs

T 3q,d4q,

(a4)

The total work done by all components of force on a cube
of volume Av is

Ay

AW = - 22
W 2

2 2 2
fwl (o, o)+ W) (0,0 )tw; (0, + ay)

Re w207, -20, 0, 7,,.] (A-5)

where W W, and w, are rotations about the x, ¥, and z
axes, respectively. No work is done on the cube during trans-
lation because the forces acting on the cube are in equilibrium.

The matrix of differential stiffness coefficients for a cube
of volume Av is written from Eq. (A-4) as

ay+o :-Txy :'sz
d1 _ R T
AlK%] = Av Ty ;O to Ty, (A-6)
| |
R e
Ty ¢ Tyg .0x+oy

The above general result is applied to evaluate the differ-
ential stiffness matrices for the quadripod structural elements.

41




Appendix B

Buckling Analysis Procedure

The formulation of the quadripod linear static response
problem by the displacement method is described by the
matrix equation

(K] {u} = {P} (B-1)
where [K] is the stiffness matrix, {u} is the displacement
vector, and {P} is the load vector.

The steps for solving a quadripod buckling problem are
listed as follows:

(1) Solve the linear static response problem Eq. (B-1) for
the quadripod structure in the absence of differential
stiffness, and compute the internal forces in elements.

(2) Using the results of Step (1), calculate the differential
stiffness matrices for individual elements, and apply
the standard reduction procedures (constraints and
partitioning) to form the differential stiffness matrix
[K?] in final form.
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(3) Replace the load vector {P} by ~ A [K%] {u}, and find
eigenvalues and eigenvectors for

[K+AK9] {u} =0 (B-2)

The eigenvalues, A, are the load level factors by which the
applied static loading is multiplied to produce buckling:

P _=AP

cr

(B-3)

P, is the critical load for buckling, and P is the applied load.

The eigenvalues, A,, and the corresponding eigenvectors,
{¢,}, are extracted by the Real Eigenvalue Analysis Module.
The criterion for the qaudripod structure to be statically stable
(free from buckling) is, therefore:

A1

(B4)



